Quantum computing has made significant strides in recent years, with major players like Google and IBM offering cloud-based quantum computing services. However, the field still faces challenges when it comes to the availability of qubits, the basic units of quantum information. Quantum computers operate on the principles of quantum superposition and entanglement, which make them
Science
In a collaborative effort between Los Alamos National Laboratory and D-Wave Quantum Systems, researchers have conducted experimental research to explore the impact of fluctuations on magnetic ordering in a network of qubits. The study aims to deepen our understanding of quantum behavior by observing and analyzing the behavior of interconnected qubits. The findings have the
Breaking new ground in the field of quantum physics, a team of experimentalists at the Max Planck Institute of Quantum Optics (MPQ) and theorists at the Chinese Academy of Sciences (CAS) have achieved a remarkable feat. For the first time, they have successfully populated and stabilized a new type of molecule known as field-linked tetratomic
Plasma, often referred to as the fourth state of matter, is an ionized gas that consists of electrons, ions, atoms, molecules, radicals, and photons. This unique form of matter has revolutionized various industries, from technology to healthcare. In recent research conducted by the FQM-136 Physics of Plasmas and FQM-346 Organic Catalysis and Nanostructured Materials groups
Emerging research conducted at the Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) suggests that the utilization of liquid lithium on the internal walls of plasma confinement devices could facilitate the fusion process and make it more practical and cost-effective. These findings were presented by Dennis Boyle, a staff research physicist at PPPL, and recently
In a recent study published in the journal Nature Communications, scientists from Los Alamos National Laboratory and the University of California, Irvine have made a significant breakthrough in the field of topological phases of matter. By using a novel strain engineering approach, they were able to convert the material hafnium pentatelluride (HfTe5) into a strong
Particle diffusion, a fundamental process in physics, has long fascinated scientists with its seemingly random nature. However, recent experiments have shed light on peculiar patterns in particle diffusion that hint at a hidden complexity yet to be fully understood. In a groundbreaking study conducted by Adrian Pacheco-Pozo and Igor Sokolov from Humboldt University of Berlin,
Quasicrystals, a type of intermetallic material, have captured the attention of researchers in the field of condensed matter physics. These unique materials possess non-repeating ordered patterns of atoms, distinguishing them from normal crystals. Quasicrystals, particularly the Tsai-type icosahedral quasicrystal (iQC) and their cubic approximant crystals (ACs), exhibit fascinating properties such as long-range ferromagnetic (FM) and
Quantum technologies have great potential in revolutionizing our communication systems and computing capabilities. In order to facilitate the development of quantum networks, researchers at the University of Basel have successfully built a quantum memory element using atoms in a tiny glass cell. This breakthrough could pave the way for mass production of these memory units,
In the pursuit of energy production, maintaining confinement of fusion-produced energetic ions is crucial in a burning plasma. However, the presence of electromagnetic waves in fusion plasmas can disrupt this confinement, leading to a decline in plasma heating and the termination of the burning plasma state. In a recent study conducted at the DIII-D National