Science

The recent breakthrough in the detection of neutrino interactions at the Short-Baseline Near Detector (SBND) at Fermi National Accelerator Laboratory marks a significant milestone in the field of particle physics. This achievement comes after years of planning, prototyping, and construction by an international collaboration of physicists and engineers. Unveiling Neutrino Interactions The unveiling of the
0 Comments
In a groundbreaking collaboration between researchers at the Charles University of Prague, the CFM center in San Sebastian, and CIC nanoGUNE’s Nanodevices group, a new complex material with unprecedented properties in the realm of spintronics has been developed. This groundbreaking discovery, highlighted in the prestigious journal Nature Materials, unveils a plethora of possibilities for the
0 Comments
Scientists have recently made a groundbreaking discovery in the realm of quantum dynamics by observing the first experimental evidence of non-Hermitian edge bursts. This revelation, as detailed in a Physical Review Letters study, sheds light on the unique behaviors exhibited by non-Hermitian systems. These systems play a pivotal role in comprehending real-world phenomena characterized by
0 Comments
Quantum error correction has been a topic of discussion and research for several decades, with the aim of achieving fault-tolerant quantum computing. Traditional approaches involve encoding a single logical qubit onto multiple entangled physical qubits, leading to scalability challenges due to resource overheads. However, recent advancements have paved the way for more efficient error correction
0 Comments
Graphene, composed of a single layer of carbon atoms in a hexagonal lattice, has gained recognition for its extraordinary electronic properties. Electrons in graphene demonstrate massless movement, opening up possibilities for advanced electronic devices with capabilities surpassing traditional silicon technology. The Role of Twisted Graphene Layers When two or more layers of graphene are combined
0 Comments
Recent research conducted by the Institute for Molecular Science delves into the intricate world of quantum entanglement between electronic and motional states within an ultrafast quantum simulator. This groundbreaking study, published in Physical Review Letters on August 30, sheds light on the correlation between Rydberg atoms and the formation of quantum entanglement, proposing a new
0 Comments
Researchers from Skoltech, Universitat Politècnica de València, Institute of Spectroscopy of RAS, University of Warsaw, and University of Iceland recently conducted a study on the spontaneous formation and synchronization of multiple quantum vortices in optically excited semiconductor microcavities. The research, published in Science Advances, explores the behavior of polariton quantum vortices in structured artificial lattices.
0 Comments